

### **Perforated Membranes**

With nearly 400 options, Velaria Systems offers an almost limitless selection of perforated patterns that can be combined with colors and images to create a totally unique effect.

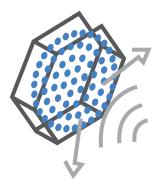
Enhance the acoustic performance by adding sound absorbing backing or combine with backlighting to animate the pattern.



Velaria Systems offers an enormous variety of perforated membrane patterns – so many that we cannot show them all here. For the full catalogue of patterns please refer to "DPS Perforations" found in the Resources section of the Velaria Systems website: <u>velariasystems.com/resources</u>

## Some Examples

The patterns shown below are just a small selection of the possibilities offered. Each membrane has a unique hole pattern, hole size, total open area and maximum allowable width for perforations.


| Image | Page # | Hole<br>Pattern | Hole<br>Size | Open<br>Area | Max.<br>Width | Image   | Page # | Hole<br>Pattern | Hole<br>Size | Open<br>Area | Max.<br>Width |
|-------|--------|-----------------|--------------|--------------|---------------|---------|--------|-----------------|--------------|--------------|---------------|
|       | 197    | WS10.1          | 0.16"        | 4.4%         | 39.4"         |         | 299    | WS9.21          | 0.12"        | 3.3%         | 63.0"         |
|       | 43     | WS3             | 0.05"        | 18.5%        | 63.0"         |         | 187    | WS27.2          | 0.12         | 7.4%         | 63.0          |
|       | 160    | WS23            | 0.79"        | 18.6%        | 18.3"         |         | 249    | WS5.2           | 0.11"        | 4.8%         | 39.4"         |
|       | 169    | WS24.5          | 0.07"        | 3.9%         | 39.5"         | · · · · | 200    | WS10.4          | 0.16"        | 0.7%         | 39.4"         |



### **Acoustic Performance**

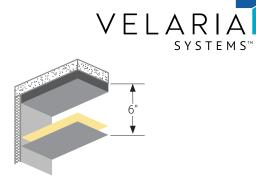
Membrane systems incorporating perforated patterns naturally have an acoustic dampening effect because they allow sound waves to enter the ceiling or wall cavity to be absorbed by the materials from which they are made. Since there are so many patterns of varying hole size and density available, it is not possible to quantify the additional acoustic performance contributed by each pattern.

However, Velaria Systems is still able to provide a minimum known level of acoustic performance based on the other components of the system (as discussed in the Acoustics – Performance section of our website).



### Comparison Tables

#### Non-Illuminated

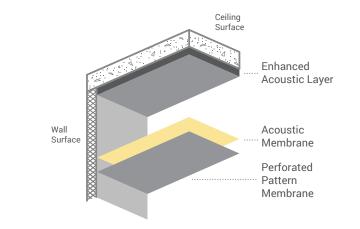

| Performance Level | Description                                                 | Noise Reduction<br>Coefficient (NRC) |
|-------------------|-------------------------------------------------------------|--------------------------------------|
| Standard          | Single Layer of Acoustic Membrane                           | 0.55                                 |
| Enhanced          | Single Layer of Acoustic Membrane + Acoustic Absorber       | 0.70                                 |
| Ultra             | Single Layer of Acoustic Membrane + Thick Acoustic Absorber | 0.90                                 |
| Basic             | Single Layer of Non-acoustic Membrane                       | min. 0.20                            |

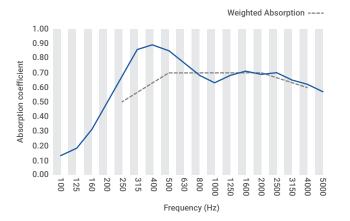
#### Illuminated

| Performance Level | Description                                                                                                      | Noise Reduction<br>Coefficient (NRC) |
|-------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Standard          | Outer Layer Perforated Membrane + Inner Layer of Acoustic<br>Membrane + Non-acoustic light sheet                 | 0.70                                 |
| Enhanced          | Outer Layer Perforated Membrane + Inner Layer of Acoustic<br>Membrane + Acoustic light sheet + Acoustic Absorber | 0.85                                 |

## Non-Illuminated Configurations

(based on typical 6" space between surface and outer membrane)

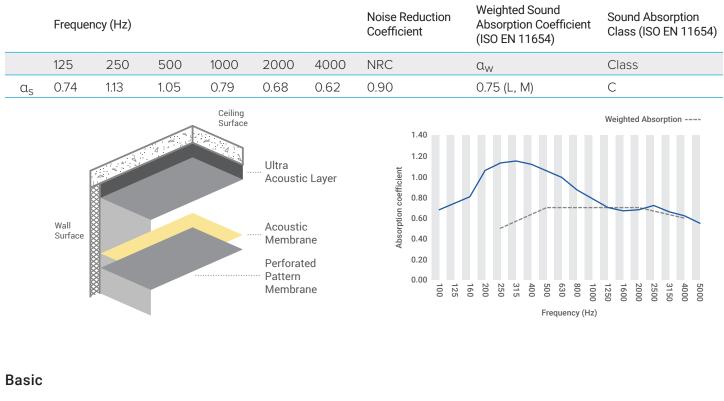




#### Standard

|                | Frequen         |      | Noise F<br>Coeffic | se Reduction Weighted Sound<br>Absorption Coefficier<br>(ISO EN 11654) |                                                        |          |                        |                                                              |     | ient | Sound Absorption<br>Class (ISO EN 11654) |        |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      |      |  |      |      |
|----------------|-----------------|------|--------------------|------------------------------------------------------------------------|--------------------------------------------------------|----------|------------------------|--------------------------------------------------------------|-----|------|------------------------------------------|--------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|--|------|------|
|                | 125             | 250  | 500                | 1000                                                                   | 2000                                                   | 4000     | NRC                    |                                                              |     | С    | W                                        |        |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С    | lass | 5    |  |      |      |
| a <sub>s</sub> | 0.11            | 0.43 | 0.65               | 0.51                                                                   | 0.57                                                   | 0.53     | 0.55                   |                                                              |     | С    | .55                                      |        |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D    | )    |      |  |      |      |
|                | Wall<br>Surface |      |                    | Ceiling<br>Surface                                                     | Acoustic<br>Membrai<br>Perforate<br>Pattern<br>Membrai | ne<br>ed | Absorption coefficient | 0.70<br>0.60<br>0.50<br>0.40<br>0.30<br>0.20<br>0.10<br>0.00 | 125 | 160  | , sec. 250                               | 400 Fr |  | 88 - 50<br>For the second | 1250 | 1600 | 2000 |  | 4000 | 5000 |

#### Enhanced

|                | Frequer | ncy (Hz) |      |      |      |      | Noise Reduction<br>Coefficient | Weighted Sound<br>Absorption Coefficient<br>(ISO EN 11654) | Sound Absorption<br>Class (ISO EN 11654) |
|----------------|---------|----------|------|------|------|------|--------------------------------|------------------------------------------------------------|------------------------------------------|
|                | 125     | 250      | 500  | 1000 | 2000 | 4000 | NRC                            | a <sub>w</sub>                                             | Class                                    |
| α <sub>s</sub> | 0.18    | 0.67     | 0.85 | 0.63 | 0.69 | 0.62 | 0.70                           | 0.70                                                       | С                                        |



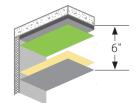




VS-SPEC-002-R01-14022024 (Ltr) 3/7



Ultra






Test Data Unavailable due to variation in perforations for single layer

NRC = min. 0.20

## Illuminated Configurations

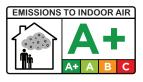




#### Standard

|                | Freque          | ncy (Hz) |      |                    |                                                                                 |                 | Noise R<br>Coeffic     |                                                                              | tion |     | Weigl<br>Abso<br>(ISO E | rptio | n Coe   | effic | ient    |      |       |   |      | ion<br>1165 | i4) |
|----------------|-----------------|----------|------|--------------------|---------------------------------------------------------------------------------|-----------------|------------------------|------------------------------------------------------------------------------|------|-----|-------------------------|-------|---------|-------|---------|------|-------|---|------|-------------|-----|
|                | 125             | 250      | 500  | 1000               | 2000                                                                            | 4000            | NRC                    |                                                                              |      |     | aw                      |       |         |       |         | С    | las   | S |      |             |     |
| a <sub>s</sub> | 0.11            | 0.43     | 0.65 | 0.51               | 0.57                                                                            | 0.53            | 0.70                   |                                                                              |      |     | 0.70                    |       |         |       |         | С    |       |   |      |             |     |
|                | Wall<br>Surface |          |      | Ceiling<br>Surface | Acoustic<br>Light She<br>Acoustic<br>Membrar<br>Perforate<br>Pattern<br>Membrar | eet<br>ne<br>ed | Absorption coefficient | 0.90<br>0.80<br>0.70<br>0.60<br>0.50<br>0.40<br>0.30<br>0.20<br>0.10<br>0.00 | 100  | 160 | 250                     | 315   | 500 Fre |       | 800 Tuu | 1250 | ighte |   | **** | 5000        |     |

#### Enhanced


| F                | Frequenc        | y (Hz) |      |                    |                                                                                                               |                 | Noise Redu<br>Coefficient                                                                         | Weighted S<br>Absorption<br>(ISO EN 11 | n Coefficient | Sound Absorption<br>Class (ISO EN 11654) |
|------------------|-----------------|--------|------|--------------------|---------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------|----------------------------------------|---------------|------------------------------------------|
| 1                | 125             | 250    | 500  | 1000               | 2000                                                                                                          | 4000            | NRC                                                                                               | aw                                     |               | Class                                    |
| a <sub>s</sub> ( | 0.51            | 1      | 0.79 | 0.87               | 0.76                                                                                                          | 0.54            | 0.85                                                                                              | 0.75(L)                                |               | С                                        |
|                  | Wall<br>Surface |        |      | Ceiling<br>Surface | Enhanced<br>Acoustic L<br>Acoustic<br>Light Shee<br>Acoustic<br>Membrane<br>Perforated<br>Pattern<br>Membrane | ayer<br>et<br>I | 1.20<br>1.00<br>tion<br>0.80<br>0.60<br>0.40<br>V<br>0.40<br>0.40<br>0.40<br>0.40<br>0.20<br>0.00 | 400<br>250<br>200                      |               | Weighted Absorption                      |

### **Fire Ratings**

The fire rating for perforated pattern membranes will be the same as the non-perforated version. For example if you have chosen a glossy color as the perforated membrane with an ASTM E84 Class A fire rating is maintained.



### Environmental



A+ rating for Volatile Organic Compounds (VOC) emissions



## Additional Design Options Available

#### Backlighting

Accentuates your pattern with even illumination

### Certifications



CE CERTIFICATE OF CONFORMITY CE: 1488-CPD-0106/W COMPLIANCE WITH STANDARD: EN 14716:2008 (system of assessment and verification of performance constancy 1)



## How to Specify

Using our simple process, specifying a pattern membrane system is easy.

- 1. Select your color or image for the membrane that will have a pattern
- 2. Select your pattern from the nearly 400 options
- 3. Select your backing membrane color
- 4. Enhance the acoustic performance (or not)
- 5. Add backlighting (or not)
- 6. Contact Velaria Systems In addition to your selections, we will need to know:
  - Size
  - Mounting Requirements (so we can select the correct profile to meet your requirement)\*

\*A wide selection of profiles is available to suit your specific requirements. Velaria Systems experts will recommend the best option to meet those requirements. No need for you to sort through a huge catalogue.